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Chapter 1

The Noncoherent Case

Abstract

If members of a suite of sensors from which fusion is to be carried out are not co-located, it
is unreasonable to assume that they share a common resolution cell grid; this is generally
ignored in the data fusion community. In this report we explore the effects of such “nonco-
incidence”, and we find that what at first seems to be a problem can in fact be exploited.
The idea is that a target is known to be confined to an intersection of overlapping resolution
cells, and this overlap is generally small.

We examine noncoincidence from two viewpoints: tracking and detection. With respect
to tracking our analysis is first static, by which is meant that we establish the decrease in
measurement error; and then dynamic, meaning that the overall effect in the tracking
problem is quantified. The detection viewpoint considers noncoincidence as it has impact
on a pre-detection fusion system. Specifically, the role of the fusion rule is examined, and
the use of noncoincidence to improve detection performance (rather than that of tracking)

is explored. Finally, we look into the idea of “single-sensor” noncoincidence.




1.1 Introduction

Observations from a suite of two or more radars can be fused at three levels: as tracks, as
detections, and as observations. In the first, each sensor performs its own tracking, with
the resulting estimated target trajectories and covariances combined. In the second, all
sensor detections are combined as input to a single tracking algorithm. It is common to
refer to these as track fusion and post-detection fusion, and schemes for each are available
in [9] and its references. In the third approach, often called pre-detection fuston, target
reports from the individual sensors are combined and evaluated prior to being passed to
a tracking routine — an excellent treatment and bibliography of the topic is in [2]. The
distinction between the second and third approaches is in the location of the hit/no-hit
decision-making: in the former this is local, and in the latter it is fused.

The three schemes are hierarchical in the location of fusion within the data-processing
chain, and it is apparent that the pre-detection case, with its fusion of the “rawest” of the

data, should offer the best performance. There are challenges, however:

o The resolution cell “grids” from the various sensors in general do not line up with
each other, and hence it is not immediately clear how reports from resolution cells

that overlap but do not coincide should be fused.

e Unless particular care is taken, the sensors will not be time-synchronized. As such,
due to target motion, reports from the same target can appear in resolution cells

which do not overlap.

These problems are daunting, and perhaps explain the concentration of algorithmic results
on the upper parts of the hierarchy, and the parallel abundance of theoretical results on
decentralized decision-making among common hypotheses (i.e. all sensors test the same
resolution cell at the same time).

It is our intention, in this report, to examine the first of the above problems, that of
resolution-cell disagreement. We shall show, in fact, that the non-coincidence afnong grids

amounts, somewhat surprisingly, to enhanced resolution: making proper use of overlap can

actually improve performance. To do so we must ignore the second problem: synchronicity
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among sensors’ observations will be assumed. (Relaxation of this will be the subject of
future research.)

We are concerned that the discussion may alienate practically-minded readers at this
point: it is not realistic that each member of a suite of sensors has its attention focused
on the same target at the same time. With reference to Figure 1.1, if the two near sensors
are assumed to scan in lock-step and are surveying a comparatively distant volume, it is
at least feasible. But sensors are seldom located so close together, and in any case cannot
be relied upon for such accurate synchronization, so to dwell on such a case would be
an apology. Our point is that there are major obstacles to the practical deployment of a
pre-detection fusion system, obstacles that have not, to our knowledge, previously received
analytical attention; and our goal is to examine one of them.

At any rate, let us return to Figure 1.1. It is clear that the resolution cells from the
sensors do not overlap precisely, and hence it is not surprising to find in Figure 1.2 that a
single target results in a confusing collection of detection information at the fusion center.

The disagreement in resolution-cell overlap appears at first to be a drawback. However,
a closer examination of the figure reveals that noncoincidence may actually be a feature,
in that the target is known to be confined to the overlap region between the two cells with

detections. There are two obvious choices:

Measurement-based fusion (MBF). The centroid over all resolution cells containing
detections (“hits”) corresponding to the target being tracked is the measurement
conveyed to the tracker. With similar-sized resolution-cells this amounts to the cen-
troid of the centroids (of the individual resolution cells); the measurement variance is
scaled by the reciprocal of the number of sensors recording hits. (This is specific to
the case that the sensors’ measurement covariances are identical; more generally, a
scaling according to the familiar “parallel resistors” law is appropriate.) This fusion
scheme does not exploit the resolution cell overlap geometry, and hence we shall use

this as a benchmark for comparison.

Resolution-cell-based fusion (RCBF). The measurements conveyed to the tracker are

the centroids of the resolution cell overlaps. The measurement error covariances




correspond to the sizes of the cell-overlaps. This scheme does exploit the overlap

geometry.

With reference to the two-sensor example shown in Figure 1.2, note that each true position
(denoted by a o) produces a hit in two different resolution cells, one for each sensor. Each
of these resolution cells has a centroid (denoted by an x), and the average of these (denoted
by a +) is taken as the measurement by MBF. In each case, however, the true position
lies within the overlap region of the two resolution cells, and the centroid of this is what is
used as a measurement in RCBF. In this two-sensor case, the MBF measurement and the
RCBF measurement are indistinguishable (although this is not always the case). However,
note that when the overlap is small (for example, in the fourth snapshot of Figure 1.2),
RCBF has the opportunity to “tell” the tracker that the measurement being supplied is
very accurate.

In the “Tracking” section we shall perform a static probabilistic analysis of the overlap,
and from this shall infer the statistics of the measurement noise under the two schemes.
By “static” we mean that no tracking is involved — our goal here is simply to evaluate
the relative quality of the measurements. It turns out that the main difference between
MBF and RCBF is not in the measurements, which tend to be very close; but rather in the
measurement noise variance to be taken as input to the Kalman filter. RCBF supplies the
fact that this variance is time-varying, while MBF does not. We then turn to the dynamic
problem, and analyze the effect of a time-varying measurement variance, and shall observe
that a stochastic measurement variance (with mean R) is more amenable to estimation
than one in which the measurement variance is deterministic and fixed at R. We conclude
the section with a Monte-Carlo comparison of MBF to RCBF, and shall observe that RCBF
is indeed superior, although by a perhaps not-overwhelming amount.

In the “Detection” section we explore in the context of noncoincidence the use of various
fusion rules for detection, and show that the rule chosen must be a compromise between
detection and estimation performance. We then look at the same problem from a different
point of view, and ask: by how much can detection in RCBF be improved over that in MBF
when both have the same tracking performance? The “trick” here will be to use a longer

pulse in RCBF such that tracking performance is identical to MBF, but SNR is increased.




Finally, we explore deliberate noncoincidence, in which a single waveform-agile sensor
has measurements from long and short pulses combined optimally in the pre-detection

sense. In this section there is no problem with an assumption of synchronization.

1.2 Tracking

1.2.1  Analysis of the static problem

With reference again to Figure 1.2, it is clear that the size of the overlap, and hence
the measurement error covariance matrix, is not constant. In this section we treat it as
random, and our goal, naturally, is to develop an expression for its probability density
function. It must be noted that, although in the situation of Figure 1.2 there is
hope of doing this exactly, in more general situations of non-congruent resolution cells (or
even congruent ones with different orientations), or with more than two sensors, an exact

solution is unlikely Qur approach here will be approximate: we shall work in only one
dimension (a random length), with the idea that results in higher dimensions (random
areas or volumes) are obtainable via products of these random lengths. It will turn out
that the one-dimensional analysis is straightforward and crisp; equally important, it will
turn out that the extension-via-product idea is reasonably accurate.

At any rate, let us begin by examining the two-sensors (and, of course, unidimensional))
case. Given the position of a target there are two intervals (one for each sensor) that are
known to contain it. Our approach is to fix one of the intervals, and allow the target’s
position and the other interval to vary — see the Appendix for the derivation. We find that
the probability density function of the overlap interval (A) is given by:

2 Ly—1L,
f(A) =7 A+—7

§(A—Ly) (1.1)

2

for 0 < A < L,, where L; and L, are the lengths of the resolution cells (Ly > Ly without
loss of generality). Conditioned on A the target’s location is uniformly distributed along
the overlap interval, and hence the estimation error has variance o? = A?/12. When

L, = L, = L (the situation of interest for two similar radars and a distant target), it




can be shown, via removing the conditioning on A, that ¢? is uniformly distributed on

[0, L2/12]; that is,

F(E) = fole®) = 120" (12

for 0 < 0? < L?/12 and zero elsewhere. For three sensors the probability density function

of the overlap interval is given by:

Li+L,+L;s  3A > (Ls — L1)(Ly — L)

A) = A< _ S(A — 1.
f5(8) 2 LiLyLs LiLyLs Ly Ly (A=L)  (13)

for 0 < A < Ly, where Ly > L, > L, are the lengths of the resolution cells. The variance

of the estimation error (again when L; = Ly = L = L) is given by

A? 36 (1 \/1202)

I (1.4)

) =) = -

for 0 < 0? < L%*/12 and zero elsewhere. Extension to more than three sensors is straight-
forward, but we do not report it here.

Let us now examine the worth of our analysis in the multidimensional case. This we
must do by example, and the situation we shall deal with is of two radars separated by 3.2
km, each with a resolution in range of 100 meters and a resolution in azimuth of 1 degree.
We have numerically evaluated measurement variances both in range (R) and in azimuth
(0) for a set of R values, by which we mean that we have used a computer to establish
the appropriate resolution cell grids and have calculated the average variances encountered
while traversing circles (centered between the sensors) at various ranges . We compare

the results to our analysis, from which we have in range and azimuth
o = 62/24 0 = (64R)?/24 (1.5)

respectively, where é, and 8 are the range and azimuth resolution, and R is the range.
The results are given in Figures 1.3 and 1.4. We observe a good match between the
predicted and computed values, with the exception of the variance in the range axis for

small values of R; the reason is that our assumption of on-average square resolution cells

is not valid here.




Our goal is to compare RCBF and MBF: how different are they? With regard to the
measurements themselves, the answer is: not very. It is easy to show that the measurements
obtained in the unidimensional case by RCBF and MBF are identical. In more than one
dimension this is not always precisely true, but it is at least approximately so when the
geometry (i.e. shape and rotation) of the various resolution cells is similar, as it is in our
case of a distant target and proximate sensors. What we have dealt with in this section is
the measurement covariance, for it is here that we expect there to be differences — to be
specific, RCBF supplies to the tracker the correct covariance, while MBF does not.

Consider a one-dimensional situation: with a single sensor (and an assumed uniformity),
the measurement error is L2/12, with L the length of the resolution cell. Using MBF for
the measurement, there is little choice but to assume an error variance of L?/24 for two
sensors and L?/36 for three. If we instead use RCBF for the measurement, we get error
variances of L?/24 and L?/40 for two and three sensors, respectively. Now, these are
identical for two sensors and quite close for three: it does not appear, in the average sense,
that RCBF offers a noticeable advantages over MBF. However, averages do not reveal the
true situation: the measurement error variance itself is stochastic and varying, and this

variation can be significant. We shall explore its effect in the next section

1.2.2 Analysis of the dynamic problem

As we have seen, the measurement noise covariance for RCBF is a stochastic process. This
implies that the evolution of the covariance matrix of the estimated states (using a Kalman
filter) is not given by the solution of the deterministic Riccati equation, but rather by the
solution of its stochastic generalization.

The state covariance matrix is updated by the Kalman filter as follows:

Pipp = FP F' + Q

Spy1 = HP oy H' + Ry,

Wit = P 'Sy

Piiik+1 = Prpie — Wip1Ser i Wiy (1.6)




In the deterministic case, the covariance evolves to a steady state which characterizes the
performance of the filter, and this solution can be computed from the associated algebraic
Riccati equation (ARE). When the measurement noise has a stochastic variance (Ry), as
In our case, there is no steady-state. However, it is legitimate to seek the ezpected value of
the error-covariance in this case, and that is the subject of this section.

Let us assume that the measurement noise covariance matrix can be modeled as:
R = R,r(k) (1.7)

where r(k) is an 72d one-dimensional stochastic process that scales the covariance matrix
R, to take into account the overlap.

The method here proposed is based on the HYCA (hybrid conditional average) method
of [8], and involves discretizing r(k) into M levels (r(k) € {r;}M,), where each level has
probability p;. Let us denote the covariance matrix associated with level : as P;(k|k). We
update each of these P;(k|k) with the measurement noise covariance associated with level
rj, resulting in M covariance matrices P;;(k + 1|k 4 1); the updated covariance matrix for

level 7 is then given by
M

P(k+1lk+1) = 3 Py (klk)p, (1.8)

1=1
The matrices P;;(k|k), which reflect the state error covariance given that r(k — 1) = ;

and r(k) = r;, are obtainable from (1.6). The mean state covariance matrix (i.e. what we

want) is given by
M
P(klk) = 3 P, (kk)p, (1.9)
J=1

evaluable when this matrix Markov process reaches steady state. Figure 1.5 shows a flow-
diagram that reflects the mechanics of the iterations.

In Figure 1.6 we have compared the actual mean state covariance matrix elements
from 50 Monte Carlo runs both with the mean obtained using our method and with that
obtained via an ARE (i.e. that obtained under the assumption that measurement noise
variance is constant and equal to its mean). For this case we have used the two-dimensional
kinematic model of equation (1.10) - the same as used to generate Figure 1.2, and the same

to be studied more extensively in the following section — with three sensors and resolution
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cells of side L = 1000m. Perhaps the most obvious conclusion is that the ARE-based
solution is pessimistic. Heuristically, when the measurement noise is time-varying the
occasional incidents of very small measurement noise (which is known to be very small)
allow a Kalman filter to “zero in” very accurately on its target’s state. Again heuristically,
a constant measurement noise variance is in a sense a worst case. A second conclusion is

that our analysis appears to be quite good.

1.2.3 Results for the dynamic problem

Our application is not the static but rather the dynamic estimation problem, z.e. tracking.
Here the analysis becomes complicated, and it is very difficult to make a fair rigorous
comparison between a Kalman filter using the average of centroids as measurements and
a fized (and statistically incorrect) measurement covariance (MBF), with one using the
centroid of the overlap as the measurement and an appropriate time-varying measurement
covariance (RCBF). Our goal is, of course, to make some statements about the relative
performance of MBF and RCBF. To do so we need ground-rule assumptions, and these

will be:

e A single target is being tracked by a collection of like sensors, from each of which
range and azimuth information is available for all detections. (There is no data
association problem here, nor is there the complication of deciding how to fuse doppler

information.)

e The resolution cell grids of the various sensors do not overlap precisely, but are known

(and hence the overlap region is available to the fusion center).

e For all sensors the false-alarm probability is zero and the probability of detection is
unity. (This assumption is of course unrealistic, but it is clear that the inclusion of
practical detection models will give results more favorable to the resolution-cell-based

paradigm. The detection aspects of non-coincidence are analyzed in the next section.)

Here we present a comparison based on a Monte Carlo simulation of a two-dimensional,

two-sensor scheme tracking a target that obeys a second order kinematic model (actually
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the same model used to create the trajectory of Figure 1.2) given by

Tey1 = A.’Ek-f-B’Uk (110)
where
[1 7 0 0]
01 0 0 /2T 0 0
A: B:
0 01T 0 0 T2/2 T
10 0 0 1 |

and where the process noise variance E{v?} = .1, and the sampling period (T') 1s 20 sec.
Note that there is no “measurement” equation; the measurements are given either by the
centroid of the cell-overlap (RCBF) or the centroid-of-centroids (MBF) - recall that our
simplifying assumption was that the probability of detection is unity and the probability
of false-alarm is zero. The measurement noise covariance matrix is proportional to the
overlap area in the first case, and is constant in the second case.

We now compare the performances of these two techniques via Monte Carlo simulation.
Those which we present are based on 50 Monte-Carlo runs; each trajectory has 50 points
in time, and the errors are averaged along each trajectory and run.

Figure 1.7 and Figure 1.8 each show errors for RCBF and for MBF, these errors being
of position and of velocity, respectively. In these plots the abscissae represent inter-sensor
distance — what we mean to show here is that the situation changes as sensors move apart
from one another, due to the variation in “disorder” of the resolution-cell grids. First,
note that RCBF offers an improvement in tracking accuracy over MBF - this improvement
is not constant, but is generally of the order of 10%. Second, note that the improve-
ment becomes more marked as the inter-sensor separation increases — again, this is due to
the increasing geometric “disorder” obtained when the resolution-cell grids emanate from
further-separated points. At any rate, we note that RCBF offers improvement over MBF
even in the two-sensor case, despite there having been no such improvement for the static
estimation. However, we must admit that the gains are modest.

We further explore the effect of the number of sensors. To be as fair as possible, the

inter-sensor distance is kept fixed: for two they are d meters apart; for three in a triangle
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of side d; for four in a square of side d; and for five in a square of side v/2d with the fifth in
the center. From Figure 1.9 it is clear that the improvement of RCBF over MBF becomes

more marked as the number of sensors increases.

1.3 Detection

The previous analysis was entirely concerned with the effects of noncoincidence on estima-
tion and on tracking. Detection was ignored, insofar as everything was based on perfect
(zero probability of false-alarm and of miss) detection.

Perhaps most central to a pre-detection fusion system is the fusion rule. This describes
explicitly what combinations of sensor outputs (binary is assumed here) result in a detec-
tion. An example of such is the or rule, under which a detection is declared if at least one
of the sensors reports a hit. The or rule is a legitimate fusion strategy; yet care must be
taken when it is applied in the context of noncoincidence, since the concept of “overlap”
when only one sensor reports a hit is not well-defined.

To proceed further we need not only to understand fusion rules, but also to understand
their effect on measurement errors in RCBF fusion. These were investigated in detail in [6]
and we report from those findings next. We shall use these results to predict which fusion
rules are best to be used in tandem with RCBF fusion, and shall further explore a scheme

whereby RCBF fusion is used to improve detection performance.

1.3.1 Fusion rules

For noncoincidence to be useful, some kind of time-synchronization between the sensors is
necessary, and as described in [6] this is tantamount to similar and nearby sensors. What
this means for us here, assuming binary decision rules at the sensor level, is that at the
fusion center the optimum rules must be of the k-out-of-N variety: declare a detection if
and only if at least k of the N sensors report hits. There are two measures of performance
which interest us: the global probability of detection (this is the obvious one) and the

average measurement error variance. Intuition suggests that the larger k, the better the
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performance with respect to the latter; however, unfortunately, performance with respect
to the former is often best for small k. Our goal in this section is to make some statements
about this trade-off.

Using the same threshold at each sensor, the probability of false alarm (Pp) and the
probability of detection (Pp) at the fusion center are given by [3]

N

Pp = Z({y )P}gu—Pﬁ)N—” (1.11)
n=k
N

Pp = Z<4¥>P£(1~P&)N‘" (1.12)
n=k

where k defines the fusion rule as above, and where Py, and F,; are the probabilities of
false alarm and of detection at the sensor level. These two quantities depend on the local
threshold and statistics under the hypotheses, but it should be noted that with k fixed this
“operating point” is an explicit function of Pp — the only optimization needed is that over
k.
Again assuming a k-out-of-N rule, we have the global measurement error variance in
each dimension (azimuth and range)
N
=3 ( N ) (e2)Pi(1 — Py)N (1.13)
n=k
where € is the measurement error variance given that n sensors report hits. This quantity

is reported in the previous section, and as the first row in Table 1.1.

n=2n=3|n=4|n=>5
€2 | L*[24 | L*/40 | L2/60 | L%/84

ns

2
€nd -9€ns

Table 1.1: Expected value of measurement errors per dimension when n sensors report hits, and
where the length of the resolution cell is L. The first row reports “static” (s) results from section

2.1; the second row gives “dynamic” (d) results.

There is a compromise between the total probability of detection and the mean error

measurement variance. The largest reduction in the latter happens for the and rule; on
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the other hand, the highest probability of detection may correspond to some intermediate
rule. To illustrate this we have computed the above quantities for the CA-CFAR scenario

in which the sensors’ observations are governed by [7]

p(X;>z|H) = (1+2z2)™

p(Xi > |K) = (1 + 1i5>_ (1.14)

under the target-absent (H) and target-present (/) hypotheses, respectively, where S
represents the signal to noise ratio. In Figure 1.10 we see the total probability of detection
and the improvement in the mean measurement variance error (¢hopr — €3pr) * 100/ € BF-
It is well-known that for the CA-CFAR scenario and reasonable SNR and P values the
and rule is poor in terms of detection. From the figure, however, we observe that the
performance in terms of measurement error is poor for low k — as such, it appears that an
intermediate value of k is a good compromise, perhaps k = 3 or 4 for the N = 5 case given,

with similar results for other values of V.

1.3.2 Better detection through overlap

It is clear that we can obtain certain measurement noise reduction by exploiting the overlap
between the resolution cells. But there is an alternative: we can enlarge the sensors’
resolution cells in the RCBF fusion scheme, and depend upon the overlap feature to reduce
it again. The purpose is the following: a larger resolution cell, at least in the range direction,
is the result of a longer pulse, and a longer pulse means a higher SNR.

The natural question is by what factor the pulse length can be increased such that the
RCBF and MBF fusion schemes enjoy the same measurement errors. Section 1.2.1 and the
first row of Table 1.1 provide one answer. The results of section 1.2.3 indicate, however,
that this is not the complete answer: it was found that the ability of RCBF fusion to use the
stochastic (varying) measurement covariance (i.e. to provide the tracker with an estimate
of its current measurement’s accuracy, which will be good when the overlap region is small)
is its true strength. A conservative (actually a very conservative) figure for the reduction in

estimation error is 10%. It must be acknowledged that: this figure is an approximation; that
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there is not a linear correspondence between measurement and estimation accuracies; and
that the analysis of section 1.2.3 was based on ideal detection performance. Nonetheless,
our analysis appears to be at least approximately correct, and in Figure 1.11 we can see the
comparison between RCBF (with both static- and dynamic-based pulse-length expansion
factors) and MBF fusion for a fixed probability of false alarm. Similar results, but for a
fixed probability of detection are shown in Figure 1.12. The decrease in miss probability

in the first case or probability of false alarm can be significant.

1.4 The Single-Sensor Case

Until now we have worked with non-colocated radars. Here we apply some of the previous
1deas to the single radar case — this is in some sense more appealing than the multi-sensor
scenario, since there is no problem of time synchronization. At any rate, we concentrate
on what happens when we introduce a special kind of non-coincidence to a single radar.

Let us assume that the radar is waveform-agile [7] to the extent that it has the capability
of using a long pulse as well as a short pulse (see Figure 1.13). Such agility is commonly
applied to deal with targets which are either very near to the sensor (where a short pulse is
required for resolution) or distant (where a long pulse is necessary for detection). Rather
than use them for such separate ends, here we shall examine the case that all space is
illuminated by both long and short pulses, and the respective information from these is
fused prior to detection.

Associated with a long pulse is good detection performance but poor range resolution;
conversely a short pulse gives a good range resolution but a poor probability of detection.
Based on this, we analyze the following scheme to combine these two measurements: use
the long pulse return to detect, and then estimate range via the short pulses. The detection
problem is a standard one, and therefore we will use a likelihood ratio with a CA-CFAR
model for the hypotheses. The range estimation problem using the short pulse returns is
more interesting. In the next section we will derive the optimum (in the minimum mean

square error sense) range estimator for this situation.
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1.4.1 The optimum range estimator

Let us assume that the duration of the long pulse is N times the duration of the short one.
Then, for each “long” cell marked with a return we have N “short” cells; an associated

return vector is, for example

u = [0010001 - - 001] (1.15)

 p——

N

where the 1’s represent a return from a short cell which is above a threshold.
The probability of any of these return vectors u conditioned on the fact that the actual

target is in cell j (i.e. the actual range is R, which is in cell j) is given by

Pl_:Pde—l(]_—Pf)N—s ;uj=1
p(u|R) =
Py= (1—P,1)P;(1—Pf)N_s—1 su; =0

where p denotes a probability mass function, Py, Py are the probabilities of detection and
false alarm associated with the short pulse and s = SN ; u;.
The minimum mean square error estimate (MMSE) of the range, R(u), is given by
R(u)=E(R|u) :/Rp(R|u)=/RMdR (1.16)
p(u)
where we will assume R is uniformly distributed over the length (L) of the range resolution

cell corresponding to the long pulse. With this we have that (1.16) can be rewritten as

(i+1)R/N
/ rPOIR) 5 (1.17)
iR/N p(u)

1 N-1

Ll i=1

R(u)

We need to compute p(u),

[sP, + (N — 5)Py| (1.18)




Now we can proceed to compute the minimum mean square error estimator

R (i+1)R/N
Ru Llp Z / Rp(u|R)dR
N LI/NZ N 21+1 ) 2iH
= p(u) {Plg w5 ) (1.19)
Li/N? 1 N2]
= P—Py)s(= P
(sPi+(N—s)Py) [( i=Fo)s(5 ) + Py

where T = (1/s)" N5 i
As easily seen, the MMSE estimator is linear in u, with parameters depending on the

Receiver Operating Characteristic (ROC) operating point. Its variance is given by

,_A

. N—
E((R(w) - B = 3 7 1 —iL/N)’ (1.20)

all w Z:O
1.4.2 Optimal pulse-length ratio

Here we explore the choice of N, the number of short pulses per long pulse. Based on the
previous analysis, and for a given operating point, we can choose N such that the variance
of the range estimator be minimum. In Figure 1.14 we have plotted the variance of the
range estimator as a function of the probability of false alarm for different N’s. We see that
the optimum /N depends on the desired probability of false alarm, with an optimum N = 4
or 5 for intermediate probabilities of false alarm, and N = 2 or 3 for low probabilities of
false alarm. When the probability of false alarm is extreme, then the relationship between
the short and long pulse becomes irrelevant, as the variance is dominated by either false

alarms or missed detections, and not estimation errors.
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1.5 Summary

Theoretical investigations of pre-detection fusion systems generally work from the idealized
assumptions that all sensors gather data from the same phenomenon at the same time. In
this report we deal with the first of these: we explore the practically-significant case that
the local data relates to somewhat different phenomena, in that the constituent resolution
cell grids do not coincide.

The intent of the research was to quantify the effect of what was hoped to be a very

attractive feature. To this end:

o We compared two schemes. Resolution-cell-based fusion (RCBF) exploits the fact
that detections from various sensors are dependent through the actual location of the
underlying target. Conversely, measurement based fusion (MBF) treats detections
from the various sensors as if they were independent, and simply averages them ap-
propriately. We find, via a “static” analysis (section 2.1), that both the measurements
themselves and their average accuracies are quite similar under the two schemes. The
difference is that RCBF is able to supply (to the tracker) an accurate depiction of

each measurement’s time-varying covariance.

e To study (“dynamically”) the effect of such random measurement covariance, we have
used both analysis (section 2.2) and simulation (section 2.3). Our results indicate that

RCBF is an improvement over MBF.

e We have investigated the effect of the detection fusion rule (section 3.1). It turns out

that there is a trade-off between detection and resolution.

e We observed that the gains in resolution can be exchanged, via pulse-lengthening, for

higher SNR and significantly improved detection performance (section 3.2).

e We introduced and analyzed a method whereby deliberate noncoincidence, using long
and short pulses in tandem at a single sensor, was able to improve upon the detection

performance of the former while retaining the resolution of the latter (section 4).
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The last point is particularly promising, and may indicate a good direction for future
research. As for the others, it turned out that our original optimism was unsatisfied, in
that the improvements we have seen are modest. Our conclusion, however, is positive:
there is certainly nothing to fear from pre-detection fusion in a realistic framework, and

indeed, it works better than under idealized conditions.
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Appendix

We will first examine the two-sensor/one-dimension case. In this case, the resolution cells
are just intervals. Given the position of a target there are two intervals (one corresponding
to each sensor) that contain it. We will denote the length of these intervals as L, and L,,
and specify L; < L, without loss of generality. Let us fix the position of one of the intervals
(Ly); then the target’s position (we will denote it by z) could be any point along the first
interval. The starting point of the second interval (we will denote this random variable
as y) could be any point in [0,L;]. A reasonable model for z and y is assume that z is
uniformly distributed in [0, L;] and y is uniformly distributed in [0, L2]. The length of the

overlapping interval (A) conditioned on a particular z is given (as a function of y) by:

efor0<y<z—A=L—y
e forr<y<l;—-A=y

oforL1<y<L2—>A:L1

This relationship is shown in Figure 1.15 for the case that ¢ < L,/2 and = > L,/2.
The probability density function of A conditioned on z can be found from the previous

relationship between A and y and the fact that y is uniformly distributed in [0, L,]

F(AL2) = (1 La)(U (&) ~U(L =)+ 2/ L)(U (L1 —) ~ U (L) + 22 b(a— L) (1.21)

2

We can now find the unconditional probability density function of A as

f8) = [ f(ale)f(z)da (1.22)

The solution of this integral is (1.1).

The generalization for more than two sensors is immediate. Let us consider the three-
sensor case: the intersection of three intervals (which we will denote by ) is equal to the
intersection of the overlap between two of them (A) and the remainder one. Then

2 Lo-A
AL ' T L,

f(rlp) = 6(y—4A) 0<y<A<Ls (1.23)
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Now we can find the unconditional pdf of v in the same way we did A, the only difference
being that A has a pdf given by (1.1) instead of a uniform. Extension to more than three

sensors is straightforward, but is not given here.
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Figure 1.1: Two close radars scanning a common (distant) area.
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Figure 1.2: Resolution cells corresponding to two radars for an example track, along with the
trajectory and measurements. (‘o’: the true trajectory, ‘x’: the centroids of resolution cells from
individual measurements, ‘+’: the average of both centroids or combined measurement.) The
solid boxes represent hits from one radar, the dashed boxes hits from the other — note that the

actual measurements lie within the overlaps of these.
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Figure 1.3: Analytic (solid line) and computed (dashed line) measurement error variance in

range.
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Figure 1.5: An illustration of the procedure for finding the steady-state covariance for a Kalman

filter operating in a stochastic environment. Only selected transitions are shown.
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Figure 1.9: RMS position error as a function of the number of radars (the distance between

radars is 3.6 km, the range resolution is 100 meters, and the azimuth resolution is 1 degree).
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Figure 1.11: Probability of miss as a function of the k-out-of-N rule for 2, 3, 4 and 5 sensors
(solid line: MBF fusion, dashed line: RCBF fusion, dashed-dot line: RCBF fusion taking into
account the dynamic gain, SNR = 10 dB, Probability of false alarm = le-3). Note that for N =2
MBF fusion and RCBF static fusion are identical.
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Figure 1.12: Probability of false alarm as a function of the k-out-of-N rule for 2, 3,4 and 5
sensors (solid line: MBF fusion, dashed line: RCBF fusion, dashed-dot line: RCBF fusion taking
into account the dynamic gain, SNR = 10 dB, Probability of detection = .999).
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consecutively.




Ll—x

01—

N=1

0.08¢

o
(=]
(o))

M.M.S.E. variance
o
o
=

0.02

0 n N L n i t " n " 1 i " n L
10" 10° 10°
Probability of false alarm

Figure 1.14: Variance of the range estimator vs the probability of false alarm for different rela-

tionships between the long and short pulse (N). The SNR for the long pulse is 30 dB

L, L,
T
T
L1 — T
z L1 ‘Lz Y x L, L, Y

Figure 1.15: Length of the overlapping interval (A) as a function of the beginning of the
second interval (y) for a fixed position of the target ().

33




Chapter 2

The Coherent Case

Abstract

It is commonly understood that in active detection systems constant-frequency pulses cor-
respond to good Doppler but poor delay resolution capability; and that linearly-swept
frequency pulses have the opposite behavior. Many systems are capable of both types of
operation, and hence in this report the fusion of such pulses is examined. It is discov-
ered that in many (but not all) situations the features complement in such a way that
tracking performance using a combined CW-FM pulse is improved by an order of magni-
tude when compared to a scheme using only a full CW or FM pulse. Also investigated
are alternating-pulse systems, and while these are suboptimal their performances appear

robust.
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2.1 Introduction

Many active detection systems (radar and sonar) are capable of waveform agility — partic-
ularly of constant frequency (CW) and linearly-swept frequency (FM, or chirp) — in their
transmitted pulses. It appears that such systems presently use their abilities, but do not
fuse the results in an optimal way. The purpose of this report is to examine the possible

‘benefits from such fusion. To be specific, we shall assume:

e A Swerling I target and white Gaussian noise. A target made up of many reflectors
simplifies our analysis, as will be seen. We expect that results using other models

would give rise to similar conclusions.

e A combined CW-FM transmitted pulse. A system implementation may be such that
CW and FM pulses are alternately transmitted, but it simplifies our intuition to
assume that pulses are abutted. We do not consider phase-coded or other broadband

pulses.

e Perfect correlation between the target RCS for the CW and FM pulses. In the case
of our “abutted” pulses this makes sense, as one would expect little change in the

observed target scattering characteristics during the course of a pulse.

e Single-pulse operation. We do not investigate the effect of multiple-pulse integration,

as it is a complication and we do not expect qualitative differences in our results.

e Known ambient noise power. Incorporating CFAR processing adds very little to our

results.

The apportionment of energy between CW and FM sub-pulses will be a parameter, and as
such we include full-CW and full-FM as special cases.

It is “common knowledge” that a constant-frequency (CW) pulse has good range-rate
(i.e. Doppler frequency) resolution characteristics, but is relatively poor at range resolution;
conversely, that an FM pulse can have excellent range, but comparatively poor range-rate

resolutions. The idea of this research is to investigate whether a combined system using
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both kinds of pulses — and consequently taking advantage of their complementary features
— can perform better than either extreme.
Our goal, therefore, is to compare the performances, with respect to tracking error, of

a number of schemes:
o A fully CW pulse, of duration 7.
o A fully linear-F'M pulse, of duration T},; sweep rate is a parameter.

o A combined FM-CW pulse, with the first (1 — )T, seconds being of constant fre-
quency, and the remaining 7, of linearly-swept frequency. As above, sweep rate is

a parameter.
e 'M and CW pulses, each of duration T, alternating on successive scans.

Comparison will be on the basis of tracking performance as specified by the algebraic
Riccati equation (ARE) modified by the hybrid conditional averaging (HYCA) technique
to account for missed detections.

In section 2.2 we give mathematical preliminaries and signal models; naturally, we
discuss ambiguity functions and probability of detection. Section 2.3 details our analysis
procedure, specifically relating to our assumptions about measurement accuracy and the

use of the HYCA approach. Finally, section 2.4 gives our results and recommendations.

2.2 Background

2.2.1 Signal and Receiver Model

Receiver processing is assumed, without loss of generality, to be performed at “baseband”;
that is, subsequent to carrier-removal via mixing. With r;(¢) the received waveform, we

have, as an output process of our matched filter,

z(t) = /s(t —u)” (r,-(u)e_ﬂ”f"") du
/s(t —u)"r(u)du (2.1)

1
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Figure 2.1: Complex envelope matched filter operation and sampling

where f. is the carrier frequency, and s(t) is a replica of the transmitted baseband signal.
This standard scheme is as pictured in figure 2.1.

The (baseband) received signal will be modeled as a return from a Swerling I [4] target;

r(t)

f

(ZA) s(t,T, fa)I(target) + v(t)

= A s(t —71)e*™ ¢TI (target) + v(t) » (2.2)

where s(t, 7, fs) = s(t — 7)exp(j27 fat) is a delayed and Doppler-shifted replica of the
emitted baseband complex envelope signal s(t), 7 is the (unknown) delay and fg is the
(unknown) Doppler frequency shift; Z(target) is a target indicator. The complex numbers
A, represent the amplitude and phase of each of the target reflectors; for a Swerling I model
the assumption is that there are many such reflectors, each one with a random amplitude
and phase. Hence A = ¥_; A; approaches a complex Gaussian random variable with zero
mean and variance 20%; v(t) is complex white Gaussian noise independent of A, with zero
mean and variance 2N,. The signal s(t) comprises a CW pulse (of duration (1 — x)T})
followed by an FM pulse (of duration £T}), and phase-continuity is assumed; in the case of

a purely-FM or purely-CW pulse, we take respectively « =0 or £ = 1.

2.2.2 Ambiguity Function

Of interest to us in the sequel is the “ambiguity function” [10], given by

7, fa) = ) / ef“fdtdt (2.3)

As is clear, the ambiguity function specifies the output of the matched filter in the absence

of noise; its shape is related to the implied resolution cell, and is strongly dependent on the
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waveform. Examples showing the effect of different energy apportionments between CW

and FM pulses are given in figures 2.3, 2.4, 2.5, and 2.6.

2.2.3 Detection

Here we discuss the detection of a delayed and Doppler-shifted return. The implied test
will use the output of the envelope (magnitude square of the real and imaginary parts
according to figure 2.1) matched filter. At time ¢ the magnitude is

2

2(t)] = (2.4)

/0 P05 O — (= T,))dA

Since the delay and Doppler shift are unknown, we examine without loss of generality this

at time T, and hence the test is given by

2 0

H,
< T (2.5)
K,

]0 (05" (0)dA

with 7 a threshold. We will characterize now the random variable z(T},) under the noise-
only hypothesis (H) and under the target-present hypothesis (K).

Noise-only hypothesis. Here we have, according to our formalism, Z(target) = 0,
and hence

Ty

o(T}) = /O v(\)s*(\)dA (2.6)
The random variable z(7) is complex Gaussian, with zero mean and variance given by:
2 * Tp TP * *
of = E{=(T)e(5)} = [ [T E{()s" (v (@)s(a)} drda
TP
- 2No/ Is(A)[2dA
0

= 2N, (2.7)

The last integral, £, is the energy of the transmitted pulse.
Target Present. In this case we have Z(target) = 1, and the matched filter output is
thus
2(T,) = /O i [As(A = 7)e e 4 y(3)] 5*(2)dA (2.8)
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This random variable is still zero mean, with variance given by:

= B@)e @) = [ [0t
E {[As()\ — 7)™ 4 y(N)][As(a — T)e?? e 4 V(a)]*} d)da

2

L Tp .
= 2No/ |s(A)]2dX + 20% / s*(A\)s(A — )&l A d)
0 0

= 2No€ + 20-/2462'/1(7_1 fd)
2
2948 Atr, 1)) (2.9)

a3

= og(l+

where we have used the definition of the ambiguity function A given by (2.3) (with a
normalization factor to take into account the non-unity energy signals).
Recall that the magnitude square of a complex Gaussian random variable is exponen-

tially distributed, with density given by:

v = N(O,0) = y =g~ eyl (2.10)
We consequently have
1 -z /202 —T /202
P, = i 27%6 Posdy = e T/ (2.11)
and
© 1 o2 —T/(zaa(lﬁfé—‘fft(r,fd)))
Py = a Ee_x/ idc = e o (2.12)
using (2.11) we get
a2 2
P, = P}/(l+'22—1\‘%A(T,fd)): fl/(l+SNRA(‘r,fd)) (2.13)

This relationship has been plotted for a particular probability of false alarm, as a
function of 7 and f; and for different CW-FM apportionments in figures 2.7, 2.8, 2.9, and
2.10. Observe the pronounced variation in the shape of the “resolution cells” as a function

of the apportionment.




2.3 Comparison of Schemes

In this section we give details relating to our mode of comparison of our various pulse-fusion
schemes. Of clear interest are the signal model, the target model, the measurement model,
and the analytical framework; and we devote a subsection to each.

In our studies we use a baseband signal s(¢) comprising (1 — k)7, seconds of “CW”

(which at baseband is constant), followed by &7, seconds of linearly-swept F'M. That is,

we have
y 0<t<(1-r)T,
N < P
s(t) = 1 j(”’“(t‘u_gﬁ )2“’) (2.14)
\/ﬁe (1—K)Tp§t<Tp
0 else

where 6 is chosen to ensure phase-continuity. Results using other configurations, such as FM
followed by CW, exhibit different ambiguity functions; however, results are qualitatively

similar.

2.3.1 The Target Model

Our target model is kinematic with range/range-rate as state variable. That is, we have:
x(t+1) = Fx(t) + Gu(t) + v(t)

where the process noise is white and zero-mean with autocorrelation E{v(t)vI(#)} = Q(#).
The “ownship” motion u(t) is taken as zero without loss of generality. Our observations

are delay and Doppler-shift:
v(t) = Hx(t) + w(t) (2.15)

where the measurement covariances E{w(t)(w(¢))7} = R are functions of the pulse shape

employed. We write

1 At
0 1
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2/c, 0
H =
0 —2f,/co
At A
Q = o2} 2 7 (2.16)
T AL At

where At represents the time between samples, ¢, is the wave’s propagation speed in the
medium, and f, is the carrier frequency. Note that for clarity we have chosen to work in
one dimension, range, since it is in this domain that the differences between the various

waveform types become apparent.

2.3.2 The Measurement Model

In the most generous world it would be possible to determine an optimal (presumably
maximum-likelihood) estimate of delay 7 and shift fu for each detection. However, due
to the complexity of such an operation most systems resort to a sampled or quantized
approach, which immediately gives rise to the concept of a resolution cell. For us, a reso-
lution cell defines a region in range/range-rate space which can be tested for the presence
or absence of a target. If a detection is declared, then the corresponding measurement as
supplied to the tracking algorithm is the centroid of that resolution cell, with measurement
covariance R derivable from the cell’s size and shape, assuming a uniform distribution of
the measurements along the cell. Ideally, therefore, resolution cells should be sufficiently
regular in geometry that they are mutually-exclusive and exhaustive of space (i.e. they
“tesselate”); and that a target located in a given cell will not effect a detection in any
other. Unfortunately this is overly-idealized even in the extreme CW or FM cases, in
which constant- P; contours tend to be elliptical in shape. And it is certainly not true when
a combined pulse is used.

For the current research we have adopted the policy of assuming a resolution cell to be
defined by all delay- and Doppler-space for which P, exceeds a certain threshold. It should
further be noted that when this threshold is chosen too low resolution cells can became
bizarrely-formed, and may even fail to be simply-connected. As such, we concentrate on

cases in which this does not happen.




Our steps are:

1. Define a resolution cell by selecting a “detection threshold” within which the proba-

bility of detection is consistently exceeded.

2. For such a resolution cell, define the probability of detection to be its average value

within that area.

3. For such a resolution cell, define the measurement covariance by assuming the detection-

producing target’s location to be uniformly-distributed within that area.

Our resolution cells do not in general tesselate; however, realistically, neither do those of

the simple CW or FM schemes.

2.3.3 Analytical Approach

The state estimation-error covariance matrix is updated by the Kalman filter as follows

([11]):

P(t+1}t) = FP({|H)FF + Q

S(t+ 1) =HP(t + 1|t)H + R(¢)

W(t+1)=P(t+1)t)H'S(t+1)7!

P(t+1jt+1) =Pt + 1[t) = W(t+ 1)S(t + 1)W'(t + 1) (2.17)

With R(t) = R this evolves to a steady state which characterizes the performance of
the filter, and this solution can be computed from the associated algebraic Riccati equation
(ARE). However, in the case that detections can be missed the measurement noise has a
stochastic covariance (R(%)), and there is no steady-state. However, it is legitimate to seek
the ezpected value of the error-covariance.

Let us assume that the measurement noise covariance matrix can be modeled as:

(2.18)

ool miss

{ R detection
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where, as described in the previous subsection, R is derived from the size and shape of the
resolution cell and the probabilities of detection and miss are the corresponding averaged
values.

The method here employed is the HYCA (hybrid conditional average) method of [8].

Under this scheme we embed a binary random process {s(¢)} into the Riccati equation such

that
1 detectt P, =1
s(t) = creeon Pr(s(t)=1) = ¢ :
2 ™miss 1-F; 1 =2
(2.19)

Then, with P;;(t + 1|¢ + 1) defined as the estimation error covariance given s(t) = ¢ and
s(t + 1) = j (obtainable from (2.17) with R(t) according to (2.18)), we get

Pi(t+1]t+1) = ZZ:P,-J-(tIt)Pr(s(t) =) (2.20)

i=1
The matrices P;(t|t) reflect the state error covariance given that s(t) = ¢. The mean state

covariance matrix (i.e. what we want) is given by

M
P(t|t) = >_P;(t|t)Pr(s(t) =1) (2.21)
i=1
evaluable when this matrix Markov process reaches steady state. Figure 2.2 shows a flow-

diagram that reflects the mechanics of the iterations.

2.4 Results

We have developed two sets of representative plots: one with parameters suitable for sonar
(i.e. low carrier frequency, long pulses, slow-moving targets), the other more applicable to

the radar situation (high frequency, short pulses, fast-moving targets).

2.4.1 The Sonar Case

For the active sonar case we assume a pulse-length of T, = 1s, a sampling rate of At = 30s,

and a carrier frequency of f; = 3.5kHz. For various values of x we show in figures 2.7, 2.8,
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Py(k/k) Py Pk +1/k+1)

1—-Fy

Py(k/k) — Pyk+1/k+1)

Figure 2.2: An illustration of the procedure for finding the steady-state covariance for a Kalman

filter operating in a stochastic environment.

2.9, and 2.10 representative constant-P; contours; in each case here we have SNR= 20 dB
and k = 50Hz/s - this corresponds to a maximum frequency sweep of 50Hz, found in case
k = 1. As discussed earlier, the “resolution cell” is determined by the volume enclosed by
one of these contours, and for the CW and FM cases these are as expected: in the former
we have good and comparatively poor range resolutions; and in the latter apparently the
reverse. Intermediate values of k give more complicated P; contours, but if a large contour
is chosen as the resolution cell boundary the results appear promising. Here the resolution
cell is determined by the P; = 0.8 contour. In figure 2.11 we show the corresponding
measurement errors — these are the diagonal elements of the measurement covariances R.

In figure 2.12 we show steady-state tracking errors obtained via our HYCA procedure,

for various values of maneuvering index (i.e. o7). There are a number of items of note here:

e For a low maneuvering index, corresponding to relatively straight-line target mo-
tions, FM outperforms CW. However, for more maneuvering targets the opposite is
true. This perhaps-surprising behavior stems from shape of the FM resolution cell as
shown in figures 2.7, 2.8, 2.9, and 2.10: in the former case where tracking is accurate
the measurement range uncertainty corresponds to a “strip” across a narrow resolu-
tion cell; in the latter the prior tracking information contributes little to knowledge

of position within the resolution cell, whose elongated shape in turn produces an
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inaccurate measurement.

e In all cases shown here a value k = 50% (half FM, half CW) is optimal. The
improvement in range estimation, as compared to FM-only or CW-only can be as

high as an order of magnitude.

o The alternating-pulse scheme, pictured as the horizontal lines in figure 2.12, has

excellent performance for low-maneuverability targets.

Figure 2.13 corresponds to figure 2.12, with the difference that the resolution here is
determined by the P; = 0.6 contour. In this case we find that a combined pulse, far from
contributing an order-of-magnitude reduction to the estimation errors, actually causes a
degradation in performance for low-maneuvering targets. The reason for this is clear from
figures 2.7, 2.8, 2.9, and 2.10: for lower values of Py the resolution cell structure becomes
complicated and no longer simply connected, and the result is a high level of measurement

uncertainty from a given detection.

2.4.2 The Radar Case

In this case we have assumed a rather long pulse, T, = 100us and a carrier frequency of
f, = 40GHz. The long pulse combined with the high carrier frequency gives a frequency
resolution well below the expected Doppler-shift. The FM modulation corresponds in this
case to a k = 500kHz/s. The sampling period is At = 1s, and the SNR, as before is 20
dB. Figure 2.14 shows the steady state prediction variances for three different process noise
intensities. As we can see, for low process noise, the alternating scheme has a performance
almost as good as the combined pulse. On the other hand, for high process noise, the

combined pulse performs considerable better than the alternating scheme.
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2.5 Summary

In this report we have investigated the benefits from combined constant- and swept-
frequency pulse fusion systems. Our comparison is in terms of steady-state tracking per-
formance, via the algebraic Riccati equation, as modified to account for missed detections.
Fundamental to our analysis is the resolution cell — defined for our purposes as the volume
of range/range-rate space wherein the probability of detection exceeds a given threshold -
and its implied measurement error. Qur results indicate that in certain reasonable situa-
tions a fused pulse can lead to dramatic improvement in tracking error — as much as an

order of magnitude range-estimation error variance reduction.
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Figure 2.5: Ambiguity function for frequency sweep rate k = 50 Hz/s: k = 60%.
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Figure 2.6: Ambiguity function for frequency sweep rate k = 50Hz/s: « = 100% (FM).
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Figure 2.7: Probability of detection contours for a = .001: & = 0% (CW). In this case we
have frequency sweep factor k = 50Hz/s.
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Figure 2.9: Probability of detection contours for @ = .001: k£ = 60%. In this case we have

frequency sweep factor k = 50Hz/s.
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Figure 2.10: Probability of detection contours for & = .001: & = 100% (FM). In this case

we have frequency sweep factor k = 50Hz/s.
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Figure 2.11: Measurement error variances as a function of , same parameters as figures

2.7, 2.8, 2.9, and 2.10. Above: Delay variance; below: Doppler-shift variance.
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Figure 2.12: Steady-state estimation errors as a function of £, same parameters as figures

2.7, 2.8, 2.9, and 2.10. Above: range variance; below: range-rate variance. Dashed lines:

ag = 0.1; solid lines: 03 = (.01; Dash-dot lines: 03 = 0.0001. For each case the horizontal

lines refer to the case of alternating CW/FM pulses.




Figure 2.13: Steady-state estimation errors as a function of k, same parameters as figure
2.7, 2.8, 2.9, and 2.10, except that here the resolution cell is determined by the P; = 0.6
contour. Above: range variance; below: range-rate variance. Dashed lines: 02 = 0.1; solid
lines: 03 = 0.01; Dash-dot lines: 03 = 0.0001. For each case the horizontal lines refer to

the case of alternating CW/FM pulses.
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Figure 2.14: Steady-state estimation errors as a function of & for the radar case described in
section 2.4.2. Above: range variance; below: range-rate variance. Dashed lines: 03 = 1000;
solid lines: ag = 100; Dash-dot lines: 03 = 10. For each case the horizontal lines refer to

the case of alternating CW/FM pulses.
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